
Public

SMART CONTRACT AUDIT REPORT

for

SelfCrypto

Prepared By: Xiaomi Huang

PeckShield
October 1, 2023

1/18 PeckShield Audit Report #: 2023-236

contact@peckshield.com

Public

Document Properties

Client SelfCrypto
Title Smart Contract Audit Report
Target SelfNft
Version 1.0
Author Xuxian Jiang
Auditors Patrick Lou, Xuxian Jiang
Reviewed by Xiaomi Huang
Approved by Xuxian Jiang
Classification Public

Version Info

Version Date Author(s) Description
1.0 October 1, 2023 Xuxian Jiang Final Release
1.0-rc September 28, 2023 Xuxian Jiang Release Candidate

Contact

For more information about this document and its contents, please contact PeckShield Inc.

Name Xiaomi Huang
Phone +86 183 5897 7782
Email contact@peckshield.com

2/18 PeckShield Audit Report #: 2023-236

Public

Contents

1 Introduction 4
1.1 About SelfNft . 4
1.2 About PeckShield . 5
1.3 Methodology . 5
1.4 Disclaimer . 7

2 Findings 9
2.1 Summary . 9
2.2 Key Findings . 10

3 ERC721 Compliance Checks 11

4 Detailed Results 13
4.1 Improved Commission Validation in SelfNft . 13
4.2 Revisited Logic to Forward collectedTokens . 14
4.3 Trust Issue of Admin Keys . 15

5 Conclusion 17

References 18

3/18 PeckShield Audit Report #: 2023-236

Public

1 | Introduction

Given the opportunity to review the source code of the SelfNft smart contract, we outline in the report
our systematic method to evaluate potential security issues in the smart contract implementation,
expose possible semantic inconsistency between smart contract code and the documentation, and
provide additional suggestions or recommendations for improvement. Our results show that the
given version of the smart contract exhibits no ERC721 compliance issues or security concerns. This
document outlines our audit results.

1.1 About SelfNft

SelfNft is a smart contract that allows users to mint unique Self Identity NFTs (SIN) based on their
provided names. It is built on top of OpenZeppelin ERC721 standard implementation with an extension
of registering names with the payment of multiple types of tokens. For the registered name, it
computes the SHA256 hash and converts it into uint to act as a token id. Once a name is registered
by a user, it cannot be registered by anyone however the owner of a name can transfer it to the new
owner. The basic information of the audited contracts is as follows:

Table 1.1: Basic Information of SelfNft

Item Description
Name SelfCrypto
Type ERC721 Smart Contract

Platform Solidity
Audit Method Whitebox

Audit Completion Date October 1, 2023

In the following, we show the Git repository of reviewed file and the commit hash value used in
this audit.

• https://github.com/ruwaifatahir/self-nft-addon.git (ae39b45)

And this is the commit ID after all fixes for the issues found in the audit have been checked in:

4/18 PeckShield Audit Report #: 2023-236

Public

• https://github.com/ruwaifatahir/self-nft-addon.git (33ba550)

1.2 About PeckShield

PeckShield Inc. [9] is a leading blockchain security company with the goal of elevating the security,
privacy, and usability of the current blockchain ecosystems by offering top-notch, industry-leading
services and products (including the service of smart contract auditing). We are reachable at Telegram
(https://t.me/peckshield), Twitter (http://twitter.com/peckshield), or Email (contact@peckshield.com).

Table 1.2: Vulnerability Severity Classification

Im
pa
ct

High Critical High Medium

Medium High Medium Low

Low Medium Low Low

High Medium Low

Likelihood

1.3 Methodology

To standardize the evaluation, we define the following terminology based on the OWASP Risk Rating
Methodology [8]:

• Likelihood represents how likely a particular vulnerability is to be uncovered and exploited in
the wild;

• Impact measures the technical loss and business damage of a successful attack;

• Severity demonstrates the overall criticality of the risk.

Likelihood and impact are categorized into three ratings: H, M and L, i.e., high, medium and
low respectively. Severity is determined by likelihood and impact and can be classified into four
categories accordingly, i.e., Critical, High, Medium, Low shown in Table 1.2.

To evaluate the risk, we go through a list of check items and each would be labeled with
a severity category. For one check item, if our tool or analysis does not identify any issue, the
contract is considered safe regarding the check item. For any discovered issue, we might further

5/18 PeckShield Audit Report #: 2023-236

https://t.me/peckshield
http://twitter.com/peckshield
contact@peckshield.com

Public

Table 1.3: The Full List of Check Items

Category Check Item

Basic Coding Bugs

Constructor Mismatch
Ownership Takeover

Redundant Fallback Function
Overflows & Underflows

Reentrancy
Money-Giving Bug

Blackhole
Unauthorized Self-Destruct

Revert DoS
Unchecked External Call

Gasless Send
Send Instead of Transfer

Costly Loop
(Unsafe) Use of Untrusted Libraries
(Unsafe) Use of Predictable Variables
Transaction Ordering Dependence

Deprecated Uses
Approve / TransferFrom Race Condition

ERC721 Compliance Checks Compliance Checks (Section 3)
Semantic Consistency Checks Semantic Consistency Checks

Advanced DeFi Scrutiny

Business Logics Review
Functionality Checks

Authentication Management
Access Control & Authorization

Oracle Security
Digital Asset Escrow
Kill-Switch Mechanism

Operation Trails & Event Generation
Frontend-Contract Integration

Deployment Consistency
Holistic Risk Management

Additional Recommendations

Avoiding Use of Variadic Byte Array
Using Fixed Compiler Version
Making Visibility Level Explicit
Making Type Inference Explicit

Adhering To Function Declaration Strictly
Following Other Best Practices

6/18 PeckShield Audit Report #: 2023-236

Public

deploy contracts on our private testnet and run tests to confirm the findings. If necessary, we would
additionally build a PoC to demonstrate the possibility of exploitation. The concrete list of check
items is shown in Table 1.3.

In particular, we perform the audit according to the following procedure:

• Basic Coding Bugs: We first statically analyze given smart contracts with our proprietary static
code analyzer for known coding bugs, and then manually verify (reject or confirm) all the issues
found by our tool.

• Semantic Consistency Checks: We then manually check the logic of implemented smart con-
tracts and compare with the description in the white paper.

• ERC721 Compliance Checks: We also validate whether the implementation logic of the audited
smart contract(s) follows the standard ERC721 specification and other best practices.

• Advanced DeFi Scrutiny: We further review business logics, examine system operations, and
place DeFi-related aspects under scrutiny to uncover possible pitfalls and/or bugs.

• Additional Recommendations: We also provide additional suggestions regarding the coding and
development of smart contracts from the perspective of proven programming practices.

To better describe each issue we identified, we categorize the findings with Common Weakness
Enumeration (CWE-699) [7], which is a community-developed list of software weakness types to
better delineate and organize weaknesses around concepts frequently encountered in software devel-
opment. Though some categories used in CWE-699 may not be relevant in smart contracts, we use
the CWE categories in Table 1.4 to classify our findings.

1.4 Disclaimer

Note that this security audit is not designed to replace functional tests required before any software
release, and does not give any warranties on finding all possible security issues of the given smart
contract(s) or blockchain software, i.e., the evaluation result does not guarantee the nonexistence
of any further findings of security issues. As one audit-based assessment cannot be considered
comprehensive, we always recommend proceeding with several independent audits and a public bug
bounty program to ensure the security of smart contract(s). Last but not least, this security audit
should not be used as investment advice.

7/18 PeckShield Audit Report #: 2023-236

Public

Table 1.4: Common Weakness Enumeration (CWE) Classifications Used in This Audit

Category Summary
Configuration Weaknesses in this category are typically introduced during

the configuration of the software.
Data Processing Issues Weaknesses in this category are typically found in functional-

ity that processes data.
Numeric Errors Weaknesses in this category are related to improper calcula-

tion or conversion of numbers.
Security Features Weaknesses in this category are concerned with topics like

authentication, access control, confidentiality, cryptography,
and privilege management. (Software security is not security
software.)

Time and State Weaknesses in this category are related to the improper man-
agement of time and state in an environment that supports
simultaneous or near-simultaneous computation by multiple
systems, processes, or threads.

Error Conditions,
Return Values,
Status Codes

Weaknesses in this category include weaknesses that occur if
a function does not generate the correct return/status code,
or if the application does not handle all possible return/status
codes that could be generated by a function.

Resource Management Weaknesses in this category are related to improper manage-
ment of system resources.

Behavioral Issues Weaknesses in this category are related to unexpected behav-
iors from code that an application uses.

Business Logic Weaknesses in this category identify some of the underlying
problems that commonly allow attackers to manipulate the
business logic of an application. Errors in business logic can
be devastating to an entire application.

Initialization and Cleanup Weaknesses in this category occur in behaviors that are used
for initialization and breakdown.

Arguments and Parameters Weaknesses in this category are related to improper use of
arguments or parameters within function calls.

Expression Issues Weaknesses in this category are related to incorrectly written
expressions within code.

Coding Practices Weaknesses in this category are related to coding practices
that are deemed unsafe and increase the chances that an ex-
ploitable vulnerability will be present in the application. They
may not directly introduce a vulnerability, but indicate the
product has not been carefully developed or maintained.

8/18 PeckShield Audit Report #: 2023-236

Public

2 | Findings

2.1 Summary

Here is a summary of our findings after analyzing the SelfNft contract design and implementation.
During the first phase of our audit, we study the smart contract source code and run our in-house
static code analyzer through the codebase. The purpose here is to statically identify known coding
bugs, and then manually verify (reject or confirm) issues reported by our tool. We further manually
review business logics, examine system operations, and place ERC721-related aspects under scrutiny
to uncover possible pitfalls and/or bugs.

Severity # of Findings
Critical 0

High 0

Medium 1

Low 1

Informational 1

Total 3

Moreover, we explicitly evaluate whether the given contracts follow the standard ERC721 spec-
ification and other known best practices, and validate its compatibility with other similar ERC721
tokens and current DeFi protocols. The detailed ERC721 compliance checks are reported in Sec-
tion 3. After that, we examine a few identified issues of varying severities that need to be brought up
and paid more attention to. (The findings are categorized in the above table.) Additional information
can be found in the next subsection, and the detailed discussions are in Section 4.

9/18 PeckShield Audit Report #: 2023-236

Public

2.2 Key Findings

Overall, no ERC721 compliance issue was found and our detailed checklist can be found in Section 3.
Note that the smart contract implementation can be improved by resolving the identified issues
(shown in Table 2.1), including 1 medium-severity vulnerability, 1 low-severity vulnerability, and 1
informational recommendation.

Table 2.1: Key Audit Findings of SelfNft

ID Severity Title Category Status
PVE-001 Informational Improved Commission Validation in Self-

Nft
Coding Practices Resolved

PVE-002 Low Revisited Logic to Forward collectedTo-
kens

Business Logic Resolved

PVE-003 Medium Trust Issue of Admin Keys Security Features Mitigated

In the meantime, we also need to emphasize that it is always important to develop necessary
risk-control mechanisms and make contingency plans, which may need to be exercised before the
mainnet deployment. The risk-control mechanisms need to kick in at the very moment when the
contracts are being deployed in mainnet. Please refer to Section 3 for our detailed compliance checks.

10/18 PeckShield Audit Report #: 2023-236

Public

3 | ERC721 Compliance Checks

The ERC721 standard for non-fungible tokens, also known as deeds. Inspired by the ERC-20 token
standard, the ERC721 specification defines a list of API functions (and relevant events) that each
token contract is expected to implement (and emit). The failure to meet these requirements means
the token contract cannot be considered to be ERC721-compliant. Naturally, we examine the list of
necessary API functions defined by the ERC721 specification and validate whether there exist any
inconsistency or incompatibility in the implementation or the inherent business logic of the audited
contract(s).

Table 3.1: Basic View-Only Functions Defined in The ERC721 Specification

Item Description Status

balanceOf() Is declared as a public view function ✓

Anyone can query any address’ balance, as all data on the
blockchain is public

✓

ownerOf() Is declared as a public view function ✓

Returns the address of the owner of the NFT ✓

getApproved()
Is declared as a public view function ✓

Reverts while ‘_tokenId‘ does not exist ✓

Returns the approved address for this NFT ✓

isApprovedForAll() Is declared as a public view function ✓

Returns a boolean value which check ‘_operator‘ is an ap-
proved operator

✓

Our analysis shows that there is no ERC721 inconsistency or incompatibility issue found in the
audited SelfNft. In the surrounding two tables, we outline the respective list of basic view-only

functions (Table 3.1) and key state-changing functions (Table 3.2) according to the widely-adopted
ERC721 specification.

11/18 PeckShield Audit Report #: 2023-236

Public

Table 3.2: Key State-Changing Functions Defined in The ERC721 Specification

Item Description Status

safeTransferFrom()

Is declared as a public function ✓

Reverts while ‘to‘ refers to a smart contract and not implement
IERC721Receiver-onERC721Received

✓

Reverts unless ‘msg.sender‘ is the current owner, an authorized
operator, or the approved address for this NFT

✓

Reverts while ‘_tokenId‘ is not a valid NFT ✓

Reverts while ‘_from‘ is not the current owner ✓

Reverts while transferring to zero address ✓

Emits Transfer() event when tokens are transferred successfully ✓

transferFrom()

Is declared as a public function ✓

Reverts unless ‘msg.sender‘ is the current owner, an authorized
operator, or the approved address for this NFT

✓

Reverts while ‘_tokenId‘ is not a valid NFT ✓

Reverts while ‘_from‘ is not the current owner ✓

Reverts while transferring to zero address ✓

Emits Transfer() event when tokens are transferred successfully ✓

approve()
Is declared as a public function ✓

Reverts unless ‘msg.sender‘ is the current owner, an authorized
operator, or the approved address for this NFT

✓

Emits Approval() event when tokens are approved successfully ✓

setApprovalForAll()
Is declared as a public function ✓

Reverts while not approving to caller ✓

Emits ApprovalForAll() event when tokens are approved success-
fully

✓

Transfer() event Is emitted when tokens are transferred ✓

Approval() event Is emitted on any successful call to approve() ✓

ApprovalForAll() event Is emitted on any successful call to setApprovalForAll() ✓

12/18 PeckShield Audit Report #: 2023-236

Public

4 | Detailed Results

4.1 Improved Commission Validation in SelfNft

• ID: PVE-001

• Severity: Informational

• Likelihood: N/A

• Impact: N/A

• Target: SelfNft

• Category: Coding Practices [5]

• CWE subcategory: CWE-1126 [1]

Description

The SelfNft token contract allows a trusted agent (external service) to register a name for a user on
the platform. The agent earns a commission for each successful name registration. While examining
the commission management, we notice the commission update logic can be improved.

To elaborate, we show below the implementation of the related editAgent() routine. It allows
the owner to configure the agent commission rate. We notice the provided commission rate is not
validated and the implementation has an implicit assumption that the given commission should be
no larger than 1e12.

441 function editAgent(address _agent , uint _commission) external onlyOwner {
442 if (_agent == address (0)) revert InvalidAddressError ();
443 if (_commission == 0) revert InvalidCommissionError ();
444 if (! agents[_agent]. isAgent) revert NotAgentError ();

446 agents[_agent]. commission = _commission;

448 emit AgentUpdated(_agent , _commission);
449 }

Listing 4.1: SelfNft::editAgent()

Recommendation Ensure the given commission rate is no larger than 1e12.

Status This issue has been resolved. Since the contract has been deployed, the team will
exercise extra caution in configuring the affected commission rate.

13/18 PeckShield Audit Report #: 2023-236

Public

4.2 Revisited Logic to Forward collectedTokens

• ID: PVE-002

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: SelfNftAddon

• Category: Business Logic [6]

• CWE subcategory: CWE-841 [3]

Description

With the SelfNftMultitokenAddon extension, SelfNft allows users to register names as Non-Fungible

Tokens (NFTs) using multiple types of tokens, rather than being restricted to a single token. This
is made possible through real-time price feeds provided by Chainlink oracles, which ensure that the
cost of name registration is accurately calculated in the chosen token at the time of purchase. While
reviewing the logic of removing a specific Chainlink oracle, we notice the implementation can be
improved.

To elaborate, we show below the removeChainlinkPricefeed() routine. This routine has a rather
straightforward logic in validating the given payment token and simply removing it from being sup-
ported. However, the current implementation does not properly forward the collected token to the
caller.

405 function removeChainlinkPricefeed(
406 address _paymentToken
407) external onlyOwner {
408 // Validate the payment token address
409 if (_paymentToken == address (0)) revert ZeroAddressError ();
410
411 // Check if a price feed already exists for the payment token
412 if (chainlinkPriceFeeds[_paymentToken]. paymentToken == address (0))
413 revert NotAPriceFeed ();
414
415 // Remove the Chainlink price feed for the payment token
416 chainlinkPriceFeeds[_paymentToken]. paymentToken = address (0);
417
418 // Emit an event to log the removal of the Chainlink price feed
419 emit ChainlinkPriceFeedRemoved(_paymentToken);
420 }

Listing 4.2: SelfNftAddon::removeChainlinkPricefeed()

Recommendation Revise the above logic to properly transfer the collected tokens once the
respective payment token is not supported.

Status The issue has been fixed by the following commits: 2420ae7 and 7bdcd47.

14/18 PeckShield Audit Report #: 2023-236

https://github.com/ruwaifatahir/self-nft-addon/commit/2420ae7
https://github.com/ruwaifatahir/self-nft-addon/commit/7bdcd47

Public

4.3 Trust Issue of Admin Keys

• ID: PVE-003

• Severity: Low

• Likelihood: Low

• Impact: Low

• Target: Multiple Contracts

• Category: Security Features [4]

• CWE subcategory: CWE-287 [2]

Description

In the SelfNft contract, there exists a privileged owner account that plays important roles in governing
and regulating the contract-wide operations. In the following, we examine this privileged account
and the related privileged accesses in current contracts.

441 function editAgent(address _agent , uint _commission) external onlyOwner {
442 if (_agent == address (0)) revert InvalidAddressError ();
443 if (_commission == 0) revert InvalidCommissionError ();
444 if (! agents[_agent]. isAgent) revert NotAgentError ();
445
446 agents[_agent]. commission = _commission;
447
448 emit AgentUpdated(_agent , _commission);
449 }
450
451 /**
452 * @notice Adds a new agent with the specified address and commission.
453 * @param _agent The address of the agent to add.
454 * @param _commission The commission rate for the agent.
455 * @dev _commision should be in 10**6
456 */
457 function addAgent(address _agent , uint _commission) external onlyOwner {
458 if (_agent == address (0)) revert InvalidAddressError ();
459 if (_commission == 0) revert InvalidCommissionError ();
460 if (agents[_agent]. isAgent) revert AlreadyAgentError ();
461
462 agents[_agent] = Agent({ isAgent: true , commission: _commission });
463
464 emit AgentAdded(_agent , _commission);
465 }
466
467 /**
468 * @notice Removes the specified agent.
469 * @param _agent The address of the agent to remove
470 */
471 function removeAgent(address _agent) external onlyOwner {
472 if (_agent == address (0)) revert InvalidAddressError ();
473 if (! agents[_agent]. isAgent) revert NotAgentError ();
474
475 agents[_agent]. isAgent = false;

15/18 PeckShield Audit Report #: 2023-236

Public

476
477 emit AgentRemoved(_agent);
478 }
479
480 /// @notice Pauses the contract , disabling name registration and other functions.
481 function pause() external onlyOwner {
482 _pause ();
483 }
484
485 /// @notice Unpauses the contract , enabling name registration and other functions.
486 function unpause () external onlyOwner {
487 _unpause ();
488 }

Listing 4.3: Privileged Operations in SelfNft

We understand the need of the privileged functions for proper contract operations, but at the
same time the extra power to these privileged accounts may also be a counter-party risk to the
contract users. Therefore, we list this concern as an issue here from the audit perspective and highly
recommend making these privileges explicit or raising necessary awareness among protocol users.

Recommendation Make the list of extra privileges granted to these privileged accounts explicit
to the token users.

Status This issue has been confirmed and the team will have a multisig wallet to be the admin.

16/18 PeckShield Audit Report #: 2023-236

Public

5 | Conclusion

In this security audit, we have examined the SelfNft contract design and implementation. During
our audit, we first checked all respects related to the compatibility of the ERC721 specification and
other known ERC721 pitfalls/vulnerabilities and found no issue in these areas. We then proceeded
to examine other areas such as coding practices and business logics. Overall, we found one low-
severity issue and three informational recommendations which are promptly addressed by the team.
Meanwhile, as disclaimed in Section 1.4, we appreciate any constructive feedbacks or suggestions
about our findings, procedures, audit scope, etc.

17/18 PeckShield Audit Report #: 2023-236

Public

References

[1] MITRE. CWE-1126: Declaration of Variable with Unnecessarily Wide Scope. https://cwe.mitre.

org/data/definitions/1126.html.

[2] MITRE. CWE-287: Improper Authentication. https://cwe.mitre.org/data/definitions/287.html.

[3] MITRE. CWE-841: Improper Enforcement of Behavioral Workflow. https://cwe.mitre.org/data/

definitions/841.html.

[4] MITRE. CWE CATEGORY: 7PK - Security Features. https://cwe.mitre.org/data/definitions/

254.html.

[5] MITRE. CWE CATEGORY: Bad Coding Practices. https://cwe.mitre.org/data/definitions/

1006.html.

[6] MITRE. CWE CATEGORY: Business Logic Errors. https://cwe.mitre.org/data/definitions/840.

html.

[7] MITRE. CWE VIEW: Development Concepts. https://cwe.mitre.org/data/definitions/699.html.

[8] OWASP. Risk Rating Methodology. https://www.owasp.org/index.php/OWASP_Risk_Rating_

Methodology.

[9] PeckShield. PeckShield Inc. https://www.peckshield.com.

18/18 PeckShield Audit Report #: 2023-236

https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/1126.html
https://cwe.mitre.org/data/definitions/287.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/841.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/254.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/1006.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/840.html
https://cwe.mitre.org/data/definitions/699.html
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.owasp.org/index.php/OWASP_Risk_Rating_Methodology
https://www.peckshield.com

	Introduction
	About SelfNft
	About PeckShield
	Methodology
	Disclaimer

	Findings
	Summary
	Key Findings

	ERC721 Compliance Checks
	Detailed Results
	Improved Commission Validation in SelfNft
	Revisited Logic to Forward collectedTokens
	Trust Issue of Admin Keys

	Conclusion
	References

